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ABSTRACT

An outline Is given of an analysis that leads to an exact solutloa

for the problem of steady-state diffusion through a finite thick pore

into an infinite region surrounding the mouth of the pore. From this

exact formula a simple expression for the flux is derived. This ex-

pression approximates the flux with a relative error of less than 3.i$

independently of the ratio Aa where j is the length of the pore

and a its radius. If desired more accurate expressions for the flux

can be obtained from the exact solution.



1. Introduction. Diffusion in biological systems is often chsracterlsed

by vhat, from a mathematical point of view, are difficult gsetries

(hashevskW, 1960, Section I). In such psoetries although the methods

of finite differences may be numrically useful, it Is often difficult

vith these procedures to obtain rigorous and realistic error estimates

since even simple irregularities of the geometry (e.g. a right ansle in

a boundary surface) often Imply large absolute values of the highsr

derivatives, and practically all rigorous error estimates depend on

estimates of these higber order derivatives (Forsytbe,1958). Thas there

Is a distinct need for exact solutions in such a form that biologically

useful data can be computed with useful and rigorous error estimates.

Although t-ese exact solutions will be applicable to only a limited

nmber of situations, they serve as indispensable benctasrks for gaqiag

the credib.lity of approximate procedures. Cwiepre Stoker (1962) Mbere

a similar situation is described in the piysical sciences.

With this in mind the writer (Keloma,1963a,b) has began the task

of widening the class of three-dimensional geomtries In whIch ez;pcit

solutions are available fox Laplace's equation--the equation governing

steady-state diffusions. These solutions are being developed ia such

a wy that they yield formulas for the flux of solute with riprous aM

realistic estimates of the relative error. The empasis on relative

error is especially important in biological applications since models are

often constaucted for distinguis g "passive" from "active" transport

(see, e.g., Cuky (1963), Rogben (1960)).
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Because of the mathematical complexity of these developments it

seems best that they be presented fully in the mathematical literture

and that appropriate resumis be given In the biological literature.

Thin paper is the first such resud. The reader interested only in the

formulas derived for the flux can proceed directly to 3.

2.. Nckground and mthod of solution. There is a class of steady-state

diffusion problem of biological interest (Patlack,1959) which is charac-

terized by diffiasional flow from a region, say on the left, through a

right cylinder (or cylinde), called pore(s), into a large surrounding

region on the right, called the reservoir. Gray, Mathew and MIblbert

(1931) have given an exact solution for a zero thick pore with an in-

finite region above it and have given an approximate analysis for a

zero thick pore centered on the face of a cylinder where the r*aus of

the cyl Inder is much larger than the height of the cylinder which in,

turn Is much larger then the radius of the pore. Smythe (1953a,b),

Cooke and Trater (1959), Collins (i9%), and Villims (1962) bare per-

fomid analyses for a zero thick pore centered on the face of a cylinder

of infinite height. Cooke (l956,l958)snad Collins (1960&,b) and Villims

(1962) have studied a zero thick pore opening into a cylinder of infinite

radius and finite height. Also in the above mntioned papers are analyses

applicable to diffusion from a spherical cap Into a cylindrica region

(cf. Collins (1962), Knight (1936), Smte (1960)).

Our extension, (Kebinn,1963a,b) consists of an exact solution for a

pore of finite thickness with an infinite region above the pore--a useful
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model for eample for water loss through a plant pore. The writer

(Kelma,1963c) was, however, originally led to study this problem by

considering the time dependent, logitudinal diffusion of Snuin tbrough

a nephron.

Let L , and 0 denote cylindrical coordinates, a the redlum of

the pore, its length, Go the concentration at the base of the por,

P the flux (i.e. the amount of solute entering the reservoir per ut

of time), and u(r,x) the concentration of solute. The axis of the pore

(see Fig.l) coincides with the x-xis. One of its faces is centered at

the origin and the other face at r- 0 &M x - ,. The lateral wal

of the pore and the wall of the reservoir (i.e. the area r > a and

x - 0) are assued to be Impervious to the solute. Then we seek u end

F from the systm (1) of equations ( I denotes outward drawn noral):

.4Vu + cA, + V U o-a)

-U x>O -X>O C

V- -Q7, -2 11h ~. 4 -= D



Equation (1s) is Iaplace's equation In cylindrical coordinates for the

region under consideration. Equation (1b) gives the boundary condition

at the left face of the pore. Equation (ic) expresses the fact that
I

the concentration is finite at the far reaches of ti. reservoir. If am

wished it to have a v"e other tbma ', say G, at rx -i, am uol

make the chanse of dependent variable v(r,x) - 0G4(r,x). IA the cae

of water loss through a plant pore the valme u - 0 at infinity can be

realized by placing anhydrous sulfuric acid in the cbhmber il Alch the

plant leaf is located. Equation (ld) is the mth etical expresslo

that: (i) the lie r=-O and x>-9 istmaxisof s tryand

hence there is so flow across it; (ii) r -a and -1 < < 0 lthe

Impervious lateral surface of the pore; (iil) r > a and z - 0 is

the impervious surface surrounding the mouth of the pOre..

We now briefly describe the method of solution.. Since 3ssel functlos

am used in solving laplace's equation in cylindrical regions (Carslaw

and Jaeger, 1959)one foaaly expands u(r,x) on 0 <r<a and • - 0

as follows

0j-,) L.ri -J J;clhd" (2)

where J is a Bessel function of the first kind, c6 is the ath positive0%

root of J1 (r) and where the coefficients {ln: n M 0,l,...O}an unkown.

Technically, w regard = {jn} as an element in the Hlubert space of

square mmble column vectors (Riess and Nay,1952). On the basis of
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equation (2) one can write down a formal solution, say u to hold

inside the pore (Carslaw and Jaeger,1959,P.218).

+ , V I o_ L Colf -/)
Sirnh Nmll2a TO CO()

Now if I = 0 it is known that the surfaces of equiooncentrutan

are oblate spheroids (Tranter,1959,p.100). Therefore we introduce

oblate spheroidal coordinates ( 4 , ) in the reservoir. These are

given by (Hobson,1955,p.421)

r = cosh n sin , x = sinh i cos*

Then separating variables in the reservoir leads to Legendre's differ-

ential equation (Hobson,1955) with r as the independent variable.

This suggests expanding u(r,O) in even order Legpndre polynomials

2nf7 1 ) as follow

VU,) = Z n

were p {p n = 0,1,. .. } is unknovn. Then a forml solution,

say ,' can he written for the reservoir in terus of p (lobson,1955, 252)

where Q2n is a legendre function of the second kind.
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These two solutions are matched on the interface in the following

way.

We set

Both sides of (3) are then multiplied by (4n+l)i P2n(cos sin s

and integrated with respect to s over 0 x * < /2. Using the

ortho&inality property of the Legendre polynomials (Hobson,1955), i.e.

we obtain from (3) &a expression for pn in terms of 3. To obtain a

second system of equations we set

Both sides of (4) are then multiplied by

r2. JO( an sin s ) sin s cos ,/jo( Cra)

and integrated with respect to s over 0 4 4 x/2. Using the

orthogonality property (Carslaw and Jaeer,1959)

a.,%TCm J(~p SinO)nfno~d
f i
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we obtain from (4) &a expression for j in terms of p. Frm thease

two systems of equations betyeen 3 and p one is able to obtain an

explicit and remarkably useful formula for j (K(].man,19639,b). Knowing

j one can then determine p and u.

3. Flux. From the solutioa u found above the following exact expresuioa

can be obtained for the amount of solute entering the reservoir per uxit,

of time in terms of the dimensionless parameter a - / (ln,*63).

14- r (.k

where In ,c-]

_ II

MI [UrYC L+OC) -rr>

tml 0(Lx + t ... L(h 4 SO _ JtJgIb
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4y estimating the sm in (5) the folloving approxlmtiou aM error

estimate is obtained where F denotes an approximtion to F an d F -

(Kme, l,1963&).

" o, 7/r-tA
Thus F is approrimated with a relative of leas than 5% jmiforml y

t i )iO0 4 < .) wh le for th ae rn g h )2.82 the relat iverror ils

less than 1%. In the range O( ) ( x" a more accurate appoxmtio

is (Ke-,a, l963a)

vhere

01I- 0 oij

oi-mo t A
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In this case

I, 46 (8)

1(F) ~1- It_ __ ___ __

Now the right hand side of (8) decreases to 0 as ' goes for 1/S

to 0 (Kelmna,1963a)o For ' =1/% its value is 0.0341. Thus (6)

combined vith (T) gives an approximation to F such that the relative

error'is less than 3.41% uniformly in < (Q <cc) and moreover this

error tends to 0 as A-O and as N-.

These approximations seem adequate for most biological applications

If, however, the need arose for fonmla of greater accuracy one could

achieve this by compu t ing the terms d (k+). "his is compwmtively00
easy to do be.ause of the availability of asymptotic formulas for the

quantities entering the sum giving F. Each pair of terms d ( 2k , + )

00
and -%62k+W 1) thus computed can be shown to reduce the relative error

by about 0.1407 (Kebnan,1963a).

App ying fttlak's (1959) variant of landab's (1953) method to the

system (1) gives the approximation

i.e. the firat term in the series in (5).J
can be shown that for this approximation

I __FI o,7_ _ l- "
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and that th relative error is less than 6.82% unifozly in ' . This

particular approximatiom as used by Brua and ucambe (1900) in their

study of mater loss tbrou& a plat pore.
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